Impaired β-cell-β-cell coupling mediated by Cx36 gap junctions in prediabetic mice.

نویسندگان

  • C P F Carvalho
  • R B Oliveira
  • A Britan
  • J C Santos-Silva
  • A C Boschero
  • P Meda
  • C B Collares-Buzato
چکیده

Gap junctional intercellular communication between β-cells is crucial for proper insulin biosynthesis and secretion. The aim of this work was to investigate the expression of connexin (Cx)36 at the protein level as well as the function and structure of gap junctions (GJ) made by this protein in the endocrine pancreas of prediabetic mice. C57BL/6 mice were fed a high-fat (HF) or regular chow diet for 60 days. HF-fed mice became obese and prediabetic, as shown by peripheral insulin resistance, moderate hyperglycemia, hyperinsulinemia, and compensatory increase in endocrine pancreas mass. Compared with control mice, prediabetic animals showed a significant decrease in insulin-secretory response to glucose and displayed a significant reduction in islet Cx36 protein. Ultrastructural analysis further showed that prediabetic mice had GJ plaques about one-half the size of those of the control group. Microinjection of isolated pancreatic islets with ethidium bromide revealed that prediabetic mice featured a β-cell-β-cell coupling 30% lower than that of control animals. We conclude that β-cell-β-cell coupling mediated by Cx36 made-channels is impaired in prediabetic mice, suggesting a role of Cx36-dependent cell-to-cell communication in the pathogenesis of the early β-cell dysfunctions that lead to type 2-diabetes.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Variant of GJD2, Encoding for Connexin 36, Alters the Function of Insulin Producing β-Cells

Signalling through gap junctions contributes to control insulin secretion and, thus, blood glucose levels. Gap junctions of the insulin-producing β-cells are made of connexin 36 (Cx36), which is encoded by the GJD2 gene. Cx36-null mice feature alterations mimicking those observed in type 2 diabetes (T2D). GJD2 is also expressed in neurons, which share a number of common features with pancreatic...

متن کامل

Differential Distribution of Retinal Ca2+/Calmodulin-Dependent Kinase II (CaMKII) Isoforms Indicates CaMKII-β and -δ as Specific Elements of Electrical Synapses Made of Connexin36 (Cx36)

AII amacrine cells are essential interneurons of the primary rod pathway and transmit rod-driven signals to ON cone bipolar cells to enable scotopic vision. Gap junctions made of connexin36 (Cx36) mediate electrical coupling among AII cells and between AII cells and ON cone bipolar cells. These gap junctions underlie a remarkable degree of plasticity and are modulated by different signaling cas...

متن کامل

Connexin 36 mediates blood cell flow in mouse pancreatic islets.

The insulin-secreting β-cells are contained within islets of Langerhans, which are highly vascularized. Blood cell flow rates through islets are glucose-dependent, even though there are no changes in blood cell flow within in the surrounding exocrine pancreas. This suggests a specific mechanism of glucose-regulated blood flow in the islet. Pancreatic islets respond to elevated glucose with sync...

متن کامل

Connexin-36 Gap Junctions Regulate In Vivo First- and Second-Phase Insulin Secretion Dynamics and Glucose Tolerance in the Conscious Mouse

Insulin is secreted from the islets of Langerhans in coordinated pulses. These pulses are thought to lead to plasma insulin oscillations, which are putatively more effective in lowering blood glucose than continuous levels of insulin. Gap-junction coupling of β-cells by connexin-36 coordinates intracellular free calcium oscillations and pulsatile insulin release in isolated islets, however a ro...

متن کامل

Decreasing Cx36 Gap Junction Coupling Compensates for Overactive KATP Channels to Restore Insulin Secretion and Prevent Hyperglycemia in a Mouse Model of Neonatal Diabetes

Mutations to the ATP-sensitive K(+) channel (KATP channel) that reduce the sensitivity of ATP inhibition cause neonatal diabetes mellitus via suppression of β-cell glucose-stimulated free calcium activity ([Ca(2+)]i) and insulin secretion. Connexin-36 (Cx36) gap junctions also regulate islet electrical activity; upon knockout of Cx36, β-cells show [Ca(2+)]i elevations at basal glucose. We hypot...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Endocrinology and metabolism

دوره 303 1  شماره 

صفحات  -

تاریخ انتشار 2012